Respuesta :
Divide both sides by [tex]x^2-1[/tex] to get a linear ODE,
[tex]\dfrac{\mathrm dy}{\mathrm dx}+\dfrac2{x^2-1}y=\dfrac{x+1}{x-1}[/tex]
In order for this operation to be valid in the first place, we require that [tex]x\neq\pm1[/tex] (since that would make [tex]\dfrac1{x^2-1}[/tex] undefined, which we don't want to happen). Then we are forcing any solution to the ODE to exist on any of the three intervals, [tex](-\infty,-1)[/tex], [tex](-1, 1)[/tex], or [tex](1,\infty)[/tex], and either the first or third of these can be chosen as the largest interval.
In case you also need to solve the ODE: Multiply both sides by [tex]\dfrac{1-x}{1+x}[/tex], so that
[tex]\dfrac{1-x}{1+x}\dfrac{\mathrm dy}{\mathrm dx}-\dfrac2{(1+x)^2}y=-1[/tex]
Then the left side can be condensed as the derivative of a product, since
[tex]\dfrac{\mathrm d}{\mathrm dx}\left[\dfrac{1-x}{1+x}\right]=-\dfrac2{(1+x)^2}[/tex]
and we have
[tex]\dfrac{\mathrm d}{\mathrm dx}\left[\dfrac{1-x}{1+x}y\right]=-1[/tex]
Integrate both sides:
[tex]\displaystyle\int\frac{\mathrm d}{\mathrm dx}\left[\frac{1-x}{1+x}y\right]\,\mathrm dx=-\int\mathrm dx[/tex]
[tex]\dfrac{1-x}{1+x}y=-x+C[/tex]
[tex]\implies\boxed{y=\dfrac{(-x+C)(1+x)}{1-x}}[/tex]