Suppose the sediment density (g/cm) of a randomly selected specimen from a certain region is normally distributed with mean 2.61 and standard deviation 0.82. (a) If a random sample of 25 specimens is selected, what is the probability that the sample average sediment density is at most 3.00? Between 2.61 and 3.00

Respuesta :

Answer: The probability that the sample average sediment density is at most 3.00 = 0.9913

The probability that the sample average sediment density is between 2.61 and 3.00 = 0.4913

Explanation:

Given : Mean : [tex]\mu=2.61 [/tex]

Standard deviation : [tex]\sigma =0.82[/tex]

Sample size : [tex]n=25[/tex]

The value of z-score is given by :-

[tex]z=\dfrac{x-\mu}{\dfrac{\sigma}{\sqrt{n}}}[/tex]

a) For x= 3.00

[tex]z=\dfrac{3.00-2.61}{\dfrac{0.82}{\sqrt{25}}}=2.38[/tex]

The p-value : [tex]P(z\leq2.38)=0.9913[/tex]

b) For x= 2.61

[tex]z=\dfrac{2.61-2.61}{\dfrac{0.82}{\sqrt{25}}}=0[/tex]

The p-value : [tex]P(0<z\leq2.38)=P(2.38)-P(0)=0.9913-0.5=0.4913[/tex]