Answer: The probability that the sample average sediment density is at most 3.00 = 0.9913
The probability that the sample average sediment density is between 2.61 and 3.00 = 0.4913
Explanation:
Given : Mean : [tex]\mu=2.61 [/tex]
Standard deviation : [tex]\sigma =0.82[/tex]
Sample size : [tex]n=25[/tex]
The value of z-score is given by :-
[tex]z=\dfrac{x-\mu}{\dfrac{\sigma}{\sqrt{n}}}[/tex]
a) For x= 3.00
[tex]z=\dfrac{3.00-2.61}{\dfrac{0.82}{\sqrt{25}}}=2.38[/tex]
The p-value : [tex]P(z\leq2.38)=0.9913[/tex]
b) For x= 2.61
[tex]z=\dfrac{2.61-2.61}{\dfrac{0.82}{\sqrt{25}}}=0[/tex]
The p-value : [tex]P(0<z\leq2.38)=P(2.38)-P(0)=0.9913-0.5=0.4913[/tex]