Answer:
The height of tower is 322.7 feet.
Step-by-step explanation:
Given
Distance between a building and tower= 250 feet
BCDE is a rectangle .Therefore, we have BC=ED and CD=BE=250 feet
In triangle ABE
[tex]tan\theta=\frac{perpendicula \; side }{hypotenuse}[/tex]
[tex]\theta=38^{\circ}[/tex]
[tex] tan38^{\circ}=\frac{AB}{BE}[/tex]
[tex]\frac{AB}{250}=0.781[/tex]
[tex] AB=0.781\times250[/tex]
AB=195.25 feet
In triangle EDC
[tex]\theta=27^{\circ}[/tex]
[tex]tan27^{\circ}=\frac{ED}{CD}[/tex]
[tex]\frac{ED}{250}=0.509[/tex]
[tex]ED=250\times0.509[/tex]
ED=127.25 feet
ED=BC=127.25 feet
The height of tower=AB+BC
The height of tower=195.25+127.25=322.5 feet