Given that x represents the number of small prints sold and y represents the number of large prints sold, determine which inequalities represent the constraints for this situation

Given that x represents the number of small prints sold and y represents the number of large prints sold determine which inequalities represent the constraints class=

Respuesta :

Answer:

Part A) [tex]15x+25y\geq 700[/tex] and [tex]x> 3y[/tex]

Part B) The point (45,10) and the point (40,5)  satisfy the system

Step-by-step explanation:

Part A) Determine which inequalities represent the constraints for this situation

Let

x -----> the number of small prints sold

y -----> the number of large prints sold

we know that

The system of inequalities that represent this situation is equal to

[tex]15x+25y\geq 700[/tex] ----> inequality A

[tex]x> 3y[/tex] ----> inequality B

Part B) With combinations of small prints and large prints satisfy this system?

we know that

If a ordered pair is a solution of the system, then the ordered pair must satisfy both inequalities

Verify each case

case 1) (45,10)

For x=45, y=10

Inequality A

[tex]15x+25y\geq 700[/tex]

[tex]15(45)+25(10)\geq 700[/tex]

[tex]925\geq 700[/tex] ----> is true

Inequality B

[tex]x> 3y[/tex]

[tex]45> 3(10)[/tex]

[tex]45> 30[/tex] ----> is true

therefore

The point (45,10) satisfy the system

case 2) (35,15)

For x=35, y=15

Inequality A

[tex]15x+25y\geq 700[/tex]

[tex]15(35)+25(15)\geq 700[/tex]

[tex]900\geq 700[/tex] ----> is true

Inequality B

[tex]x> 3y[/tex]

[tex]35> 3(15)[/tex]

[tex]35> 45[/tex] ----> is not true

therefore

The point (35,15) does not satisfy the system

case 3) (30,10)

For x=30, y=10

Inequality A

[tex]15x+25y\geq 700[/tex]

[tex]15(30)+25(10)\geq 700[/tex]

[tex]700\geq 700[/tex] ----> is true

Inequality B

[tex]x> 3y[/tex]

[tex]30> 3(10)[/tex]

[tex]30> 30[/tex] ----> is not true

therefore

The point (30,10) does not satisfy the system

case 4) (40,5)

For x=40, y=5

Inequality A

[tex]15x+25y\geq 700[/tex]

[tex]15(40)+25(5)\geq 700[/tex]

[tex]725\geq 700[/tex] ----> is true

Inequality B

[tex]x> 3y[/tex]

[tex]40> 3(5)[/tex]

[tex]40> 15[/tex] ----> is true

therefore

The point (40,5)  satisfy the system