Respuesta :
Answer:
[tex]\large\boxed{Q5.\ x=45\sqrt2}\\\boxed{Q6.\ x=8\sqrt2,\ y=4\sqrt6}[/tex]
Step-by-step explanation:
Q5.
x it's a diagonal of a square.
The formula of a length of diagonal of a square:
[tex]d=a\sqrt2[/tex]
a - side of a square
We have a = 45.
Substitute:
[tex]x=45\sqrt2[/tex]
Q6.
Look at the first picture.
In a triangle 45° - 45° - 90°, all sides are in ratio 1 : 1 : √2.
In a triangle 30° - 60° - 90°, all sidea are in ratio 1 : √3 : 2.
Look at the second picture.
from the triangle 45° - 45° - 90°
[tex]a\sqrt2=8[/tex] multiply both sides by √√2 (use √a · √a = a)
[tex]2a=8\sqrt2[/tex] divide both sides by 2
[tex]a=4\sqrt2[/tex]
from the triangle 30° - 60° - 90°
[tex]x=2a\to x=2(4\sqrt2)=8\sqrt2[/tex]
[tex]y=a\sqrt3\to y=(4\sqrt2)(\sqrt3)=4\sqrt6[/tex]
Answer:
6. [tex]\displaystyle 4\sqrt{6} = y \\ 4\sqrt{2} = x[/tex]
5. [tex]\displaystyle 45\sqrt{2} = x[/tex]
Step-by-step explanation:
30°-60°-90° Triangles
Hypotenuse → 2x
Short Leg → x
Long Leg → x√3
45°-45°-90° Triangles
Hypotenuse → x√2
Two identical legs → x
6. You solve the shorter triangle first:
[tex]\displaystyle a^2 + b^2 = c^2 \\ \\ \\ x^2 + x^2 = 8^2 \\ \\ \frac{2x^2}{2} = \frac{64}{2} → \sqrt{x^2} = \sqrt{32} \\ \\ 4\sqrt{2} = x[/tex]
Now that we know our x-value, we can solve the larger triangle:
[tex]\displaystyle 4\sqrt{6} = 4\sqrt{2}\sqrt{3} \\ \\ 4\sqrt{6} = y[/tex]
5. This exercise is EXTREMELY SIMPLE since two congruent isosceles right triangles form that square, so all you have to do, according to the rules for 45°-45°-90° triangles, is attach [tex]\displaystyle \sqrt{2}[/tex]to 45, giving you [tex]\displaystyle 45\sqrt{2}.[/tex]
I am joyous to assist you anytime.