Respuesta :
Answer:
=20.0
Step-by-step explanation:
We can first find the angle B using the sine rule as follows:
a/Sin A=b/Sin B
9/Sin 15=12/ Sin B
Sin B= (12 Sin 15)/9
=0.345
B=Sin⁻¹ 0.345
=20.18°
We then find C by using the summation of the interior angles of a triangle.
C=180-(20.18+15)
=144.82
Finding the length of c:
a/Sin A= c/ Sin C
9/Sin 15=c/Sin 144.82
c=(9 Sin 144.82)Sin 15
=20.0
Answer:
20.0 unit ( approx )
Step-by-step explanation:
Here,
ABC is a triangle in which,
m∠A=15°, a=9, and b=12,
By the law of sine,
[tex]\frac{sin A}{a}=\frac{sin B}{b}=\frac{sin C}{c}----(1)[/tex]
[tex]\frac{sin A}{a}=\frac{sin B}{b}[/tex]
[tex]\implies sin B=\frac{b sin A}{a}[/tex]
By substituting the values,
[tex]\implies sin B=\frac{12\times sin 15^{\circ}}{9}\approx 0.3451[/tex]
[tex]\implies B \approx 20.19^{\circ}[/tex]
Now, by the property of triangle,
m∠A + m∠B+ m∠C = 180°
⇒ m∠C = 180° - 15° - 20.19° = 144.81°,
By the equation (1),
[tex]c=\frac{b sin C}{sin B}=\frac{12\times sin 144.81^{\circ}}{sin 20.19^{\circ}}=20.0370532419\approx 20.0[/tex]