Respuesta :
Answer:
Part 1) [tex]C=90\°[/tex]
Part 2) [tex]A=63\°[/tex]
Part 3) [tex]b=6.8\ units[/tex]
Part 4) [tex]a=13.4\ units[/tex]
Step-by-step explanation:
step 1
Find the measure of angle C
we know that
The triangle ABC is a right triangle
so
Angle C is a right angle
therefore
[tex]C=90\°[/tex]
step 2
Fin the measure of angle A
we know that
In the right triangle ABC
∠B+∠A=90° -----> by complementary angles
we have
[tex]B=27\°[/tex]
substitute
[tex]27\°+A=90\°[/tex]
[tex]A=63\°[/tex]
step 3
Find the length side b
we know that
In the right triangle ABC
[tex]sin(B)=b/c[/tex]
[tex]b=(c)sin(B)[/tex]
substitute the given values
[tex]b=(15)sin(27\°)=6.8\ units[/tex]
step 4
Find the length side a
we know that
In the right triangle ABC
[tex]sin(A)=a/c[/tex]
[tex]a=(c)sin(A)[/tex]
substitute the given values
[tex]a=(15)sin(63\°)=13.4\ units[/tex]