Solve the right triangle, ΔABC, for the missing sides and angle to the nearest tenth given angle B = 27° and side c = 15.

Respuesta :

Answer:

Part 1) [tex]C=90\°[/tex]

Part 2) [tex]A=63\°[/tex]

Part 3) [tex]b=6.8\ units[/tex]

Part 4) [tex]a=13.4\ units[/tex]

Step-by-step explanation:

step 1

Find the measure of angle C

we know that

The triangle ABC is a right triangle

so

Angle C is a right angle

therefore

[tex]C=90\°[/tex]

step 2

Fin the measure of angle A

we know that

In the right triangle ABC

∠B+∠A=90° -----> by complementary angles

we have

[tex]B=27\°[/tex]

substitute

[tex]27\°+A=90\°[/tex]

[tex]A=63\°[/tex]

step 3

Find the length side b

we know that

In the right triangle ABC

[tex]sin(B)=b/c[/tex]

[tex]b=(c)sin(B)[/tex]

substitute the given values

[tex]b=(15)sin(27\°)=6.8\ units[/tex]

step 4

Find the length side a

we know that

In the right triangle ABC

[tex]sin(A)=a/c[/tex]

[tex]a=(c)sin(A)[/tex]

substitute the given values

[tex]a=(15)sin(63\°)=13.4\ units[/tex]

jus4n

Answer:

A = 63 , a = 13.4, b = 6.8

Step-by-step explanation: