Answer:
The equilibrium vibrational frequency that causes the shift is [tex]0.56\times10^{14}\ Hz[/tex]
Explanation:
Given that,
Wavelength of Raman line [tex]\lambda'=4768.5\ A[/tex]
Wavelength [tex]\lambda=4358.3\ A[/tex]
We need to calculate the frequency
Using formula of frequency
[tex]f =\dfrac{c}{\lambda}[/tex]
For 4748.5 A
The frequency is
[tex]f'=\dfrac{3\times10^{8}}{4748.5\times10^{-10}}[/tex]
[tex]f' =6.32\times10^{14}\ Hz[/tex]
For 4358.3 A
The frequency is
[tex]f=\dfrac{3\times10^{8}}{4358.3\times10^{-10}}[/tex]
[tex]f=6.88\times10^{14}\ Hz[/tex]
We need to calculate the shift
[tex]\Delta f=f-f'[/tex]
[tex]\Delta f=(6.88-6.32)\times10^{14}\ Hz[/tex]
[tex]\Delta f=0.56\times10^{14}\ Hz[/tex]
Hence, The equilibrium vibrational frequency that causes the shift is [tex]0.56\times10^{14}\ Hz[/tex]