Use the graph representing bacteria decay to estimate the domain of the function and solve for the average rate of change across the domain
,


A.
[tex]0 \leqslant y \leqslant 80, - 0.6875[/tex]
B.
[tex]0 \leqslant y \leqslant 80, - 1.45[/tex]
C.
[tex]0 \leqslant x \leqslant 55, - 1.45[/tex]
D.
[tex]0 \leqslant x \leqslant 55, - 0.6875[/tex]

Use the graph representing bacteria decay to estimate the domain of the function and solve for the average rate of change across the domain Atex0 leqslant y leq class=

Respuesta :

Answer:

C. [tex]0\le x\le55,-1.45[/tex]

Step-by-step explanation:

The domain of the function refers to all values of x for which the function is defined.

From the diagram the graph of the function exist on the interval [tex]x=0[/tex] to [tex]x=55[/tex].

The average rate of change is the slope of the secant line joining the points (0,f(0)) and (55,f(55)).

The average rate of change of this function f(x) on this interval is

[tex]\frac{f(55)-f(0)}{55-0}[/tex]

From the graph, [tex]f(0)=80[/tex] and [tex]f(55)=0[/tex].

The average rate of change becomes:

[tex]\frac{0-80}{55-0}=\frac{-80}{55}=-1.45[/tex] to the nearest hundredth.

The correct answer is: C

Answer: The correct answer would be C

Step-by-step explanation: