Answer:
B. [tex]f(x)=x^4-x^3+2x^2-4x-8[/tex]
Step-by-step explanation:
If [tex]2i[/tex] is a root of f(x), then the complex conjugate [tex]-2i[/tex] is also a solution. If f(x) should have exactly 2 real roots, then by the Fundamental Theorem of Algebra, the minimum degree of f(x) is 4.
Hence the first and last options are eliminated.
By the Remainder Theorem, [tex]f(2i)=0[/tex].
Let us check for options B and C.
For option B.
[tex]f(x)=x^4-x^3+2x^2-4x-8[/tex]
[tex]\implies f(2i)=(2i)^4-(2i)^3+2(2i)^2-4(2i)-8[/tex]
[tex]\implies f(2i)=16i^4-8i^3+8i^2-8i-8[/tex]
[tex]\implies f(2i)=16+8i-8-8i-8=0[/tex]
For option C
[tex]f(x)=x^4-x^3-6x^2+4x+8[/tex]
[tex]\implies f(2i)=(2i)^4-(2i)^3-6(2i)^2+4(2i)+8[/tex]
[tex]\implies f(2i)=16i^4-8i^3-24i^2+8i+8[/tex]
[tex]\implies f(2i)=-16+8i+24+8i+8\ne0[/tex]
Therefore the correct choice is B.