Answer:
A
Step-by-step explanation:
Use the property
[tex]\sqrt[n]{a^m}=a^{\frac{m}{n}}[/tex]
The numerator can be simplified as
[tex]\sqrt[7]{x^2}=x^{\frac{2}{7}}[/tex]
The denominator can be simplified as
[tex]\sqrt[5]{y^3}=y^{\frac{3}{5}}[/tex]
Also remindr property
[tex]\dfrac{1}{a^n}=a^{-n}[/tex]
Thus, the expression is equivalent to
[tex]\dfrac{\sqrt[7]{x^2} }{\sqrt[5]{y^3} }=\dfrac{x^{\frac{2}{7}}}{y^{\frac{3}{5}}}=\left(x^{\frac{2}{7}}\right)\cdot \left(y^{-\frac{3}{5}}\right)[/tex]