Respuesta :

Answer:

The solution of the equation is [tex]x=\frac{(ln4)-5}{2}[/tex] ⇒ 3rd answer

Step-by-step explanation:

* Lets explain how to solve this problem

- The function f(x) = e^x is called the (natural) exponential function

- The natural logarithm (㏑), or logarithm to base e, is the inverse

 function to the natural exponential function

∵ [tex]e^{2x+5}=4[/tex] is an exponential function

∴ We can solve it by using the inverse of e (㏑)

- Remember:

# [tex]ln(e)=1[/tex]

# [tex]ln(e^{m})=m(ln(e))=m[/tex]

- Insert ln in both sides

∴ [tex]ln(e^{2x+5})=ln(4)[/tex]

∵ [tex]ln(e^{2x+5})=(2x+5)ln(e)=2x+5[/tex]

∴ 2x + 5 = ㏑(4)

- Subtract 5 from both sides

∴ 2x = ㏑(4) - 5

- Divide both sides by 2 to find x

∴ [tex]x=\frac{ln(4)-5}{2}[/tex]

* The solution of the equation is [tex]x=\frac{(ln4)-5}{2}[/tex]

Answer:

Answer is C on edge

Step-by-step explanation:

x= (ln 4)- 5/2