Answer: 0.3524
Step-by-step explanation:
Given : Mean : [tex]\mu = 3242\text{ grams}[/tex]
Standard deviation : [tex]\sigma = 446\text{ grams}[/tex]
Sample size : [tex]n= 107[/tex]
To find the probability that the mean weight of the sample babies would differ from the population mean by less than 40 grams i.e. more than 3202 grams and less than 3282 grams
The formula for z-score :-
[tex]z=\dfrac{x-\mu}{\dfrac{\sigma}{\sqrt{n}}}[/tex]
For x = 3202 grams
[tex]z=\dfrac{3202-3242}{\dfrac{446}{\sqrt{107}}}=-0.93[/tex]
For x = 3282 grams
[tex]z=\dfrac{3282-3242}{\dfrac{446}{\sqrt{107}}}=0.93[/tex]
The P-value= [tex]P(-0.93<z<0.93)=2P(z<-0.93)=2(0.1761855)=0.352371\approx0.3524[/tex]
Hence, the required probability =0.3524