Answer: 0.7721
Step-by-step explanation:
Given : Mean : [tex]\mu = 120\text{ miles}[/tex]
Standard deviation : [tex]\sigma = 22\text{ miles}[/tex]
The formula to calculate the z-score :-
[tex]z=\dfrac{x-\mu}{\sigma}[/tex]
For x= 100 miles
[tex]z=\dfrac{100-120}{22}=-0.909090\approx-0.91[/tex]
For x= 157 miles
[tex]z=\dfrac{157-120}{22}=1.68181\approx1.68[/tex]
The P-value : [tex]P(-0.91<z<1.68)=P(z<1.68)-P(z<-0.91)[/tex]
[tex]=0.9535213-0.1814113=0.77211\approx0.7721[/tex]
Hence, the probability that a truck drives between 100 and 157 miles in a day. = 0.7721