Respuesta :
Answer:
5:4
Step-by-step explanation:
If point B divides the segment AC in the ratio 2:1, then
AB=2x units and BC=x units.
If point D divides the segment AB in the ratio 3:2, then
AD=3y units and DB=2y units.
Since AD+DB=AB, then
[tex]3y+2y=2x\\ \\5y=2x\\ \\y=\dfrac{2}{5}x[/tex]
Now,
[tex]AD=3y\\ \\DC=DB+BC=2y+x=2y+\dfrac{2}{5}y=\dfrac{12}{5}y[/tex]
So,
[tex]AD:DC=3y:\dfrac{12}{5}y=15:12=5:4[/tex]
Answer:
AD:DC=6:9
Step-by-step explanation:
We know that:
AB:BC=2:1
AD:DB=3:2
We can conclude that:
AB+BC=AC
Then:
AB=2/3AC
BC=1/3AC
AD+DB=AB
Then
AD=3/5AB
DB=2/5AB
From the above we can replace:
AD=(3/5)(2/3AC)=6/15AC
On the other hand:
DC= DB+BC
DC=2/5AB+1/3AC
In terms of AC
DC=((2/5)(2/3AC))+1/3AC=4/15AC+1/3AC
DC=27/45AC=9/15AC
From:
AD=6/15AC
DC=9/15AC
we can say that:
AD:DC=6:9