Answer : The value of [tex]K_{goal}[/tex] for the final reaction is, [tex]1.238\times 10^{-7}[/tex]
Explanation :
The following equilibrium reactions are :
(1) [tex]2CO_2(g)+2H_2O(l)\rightleftharpoons CH_3COOH(l)+2O_2[/tex] [tex]K_1=5.40\times 10^{-16}[/tex]
(2) [tex]2H_2(g)+O_2(g)\rightleftharpoons 2H_2O(l)[/tex] [tex]K_2=1.06\times 10^{10}[/tex]
(3) [tex]CH_3COOH(l)\rightleftharpoons 2C(s)+O_2(g)[/tex] [tex]K_3=2.68\times 10^{-9}[/tex]
The final equilibrium reaction is :
[tex]CO_2(g)\rightleftharpoons C(s)+O_2(g)[/tex] [tex]K_{goal}=?[/tex]
Now we have to calculate the value of [tex]K_{goal}[/tex] for the final reaction.
First half the equation 1, 2 and 3 that means we are taking square root of equilibrium constant and then add all the equation 1, 2 and 3 that means we are multiplying all the equilibrium constant, we get the final equilibrium reaction and the expression of final equilibrium constant is:
[tex]K_{goal}=\sqrt{K_1\times K_2\times K_3}[/tex]
Now put all the given values in this expression, we get :
[tex]K_{goal}=\sqrt{(5.40\times 10^{-16})\times (1.06\times 10^{10})\times (2.68\times 10^{-9})}[/tex]
[tex]K_{goal}=1.238\times 10^{-7}[/tex]
Therefore, the value of [tex]K_{goal}[/tex] for the final reaction is, [tex]1.238\times 10^{-7}[/tex]