Determine the value of the equilibrium constant, Kgoal, for the reaction CO2(g)⇌C(s)+O2(g), Kgoal=? by making use of the following information: 1. 2CO2(g)+2H2O(l)⇌CH3COOH(l)+2O2(g), K1 = 5.40×10−16 2. 2H2(g)+O2(g)⇌2H2O(l), K2 = 1.06×1010 3. CH3COOH(l)⇌2C(s)+2H2(g)+O2(g), K3 = 2.68×10−9

Respuesta :

Answer : The value of [tex]K_{goal}[/tex] for the final reaction is, [tex]1.238\times 10^{-7}[/tex]

Explanation :

The following equilibrium reactions are :

(1) [tex]2CO_2(g)+2H_2O(l)\rightleftharpoons CH_3COOH(l)+2O_2[/tex] [tex]K_1=5.40\times 10^{-16}[/tex]

(2) [tex]2H_2(g)+O_2(g)\rightleftharpoons 2H_2O(l)[/tex] [tex]K_2=1.06\times 10^{10}[/tex]

(3) [tex]CH_3COOH(l)\rightleftharpoons 2C(s)+O_2(g)[/tex] [tex]K_3=2.68\times 10^{-9}[/tex]

The final equilibrium reaction is :

[tex]CO_2(g)\rightleftharpoons C(s)+O_2(g)[/tex] [tex]K_{goal}=?[/tex]

Now we have to calculate the value of [tex]K_{goal}[/tex] for the final reaction.

First half the equation 1, 2 and 3 that means we are taking square root of equilibrium constant and then add all the equation 1, 2 and 3 that means we are multiplying all the equilibrium constant, we get the final equilibrium reaction and the expression of final equilibrium constant is:

[tex]K_{goal}=\sqrt{K_1\times K_2\times K_3}[/tex]

Now put all the given values in this expression, we get :

[tex]K_{goal}=\sqrt{(5.40\times 10^{-16})\times (1.06\times 10^{10})\times (2.68\times 10^{-9})}[/tex]

[tex]K_{goal}=1.238\times 10^{-7}[/tex]

Therefore, the value of [tex]K_{goal}[/tex] for the final reaction is, [tex]1.238\times 10^{-7}[/tex]