Initially, a particle is moving at 5.24 m/s at an angle of 35.2° above the horizontal. Four seconds later, its velocity is 6.25 m/s at an angle of 57.5° below the horizontal. What was the particle's average acceleration during these 4.00 seconds in the x-direction (enter first) and the y-direction?

Respuesta :

Answer:

- 0.23

0.56

Explanation:

[tex]\underset{v_{o}}{\rightarrow}[/tex] = initial velocity of the particle = [tex](5.24 Cos35.2) \hat{i} + (5.24 Sin35.2) \hat{j}[/tex] = [tex](4.28) \hat{i} + (3.02) \hat{j}[/tex]

[tex]\underset{v_{f}}{\rightarrow}[/tex] = final velocity of the particle = [tex](6.25 Cos57.5) \hat{i} + (6.25 Sin57.5) \hat{j}[/tex] = [tex](3.36) \hat{i} + (5.27) \hat{j}[/tex]

t = time interval = 4.00 sec

[tex]\underset{a}{\rightarrow}[/tex] = average acceleration = ?

Using the kinematics equation

[tex]\underset{v_{f}}{\rightarrow}[/tex] = [tex]\underset{v_{o}}{\rightarrow}[/tex] + [tex]\underset{a}{\rightarrow}[/tex] t

[tex](3.36) \hat{i} + (5.27) \hat{j}[/tex] = [tex](4.28) \hat{i} + (3.02) \hat{j}[/tex] + [tex]\underset{a}{\rightarrow}[/tex] (4)

[tex](- 0.92) \hat{i} + (2.25) \hat{j}[/tex] = 4 [tex]\underset{a}{\rightarrow}[/tex]

[tex]\underset{a}{\rightarrow}[/tex] = [tex](- 0.23) \hat{i} + (0.56) \hat{j}[/tex]

hence

Average acceleration along x-direction = - 0.23

Average acceleration along y-direction = 0.56