Answer:
The heat of reaction for the combustion of a mole of Ti in this calorimeter is [tex]7.769\times 10^4 kJ/mol[/tex].
Explanation:
[tex]Ti (s) + O_2 (g) \rightarrow TiO_2 (s)[/tex]
Moles of titanium =[tex]\frac{2.060 g}{47.867 g/mol}=0.04303 mol[/tex]
Heat absorbed by the bomb caloriometer on combustion of 0.04303 mol of titanium be Q
The heat capacity of the bomb caloriometer =c = 9.84 kJ/K
Change in temperature of the bomb caloriometer :
=ΔT=91.60 °C-25.00 °C=66.6 °C = 339.75 K
Q = c × ΔT
[tex]Q= 9.84 kJ/K\times 339.75 K=3,343.14 kJ[/tex]
3,343.14 kJ of heat energy was released when 0.04303 moles of titanium undergone combustion.
So for 1 mol of titanium:
[tex]\frac{3,343.14 kJ}{0.04303 moles}=77,693.237 kJ/mol=7.769\times 10^4 kJ/mol[/tex]
The heat of reaction for the combustion of a mole of Ti in this calorimeter is [tex]7.769\times 10^4 kJ/mol[/tex].