Answer: [tex]1.109\times 10^3[/tex] with four significant digits.
Explanation:
Given,
[tex]\Delta H[/tex] = 178.5 KJ/mole = 178500 J/mole (1kJ=1000J)
[tex]\Delta S[/tex] = 161.0 J/mole.K
According to Gibbs–Helmholtz equation:
[tex]\Delta G=\Delta H-T\Delta S[/tex]
[tex]\Delta G[/tex] = Gibbs free energy
[tex]\Delta H[/tex] = enthalpy change
[tex]\Delta S[/tex] = entropy change
T = temperature in Kelvin
[tex]\Delta G[/tex]= +ve, reaction is non spontaneous
[tex]\Delta G[/tex]= -ve, reaction is spontaneous
[tex]\Delta G[/tex]= 0, reaction is in equilibrium
As per question the reaction is spontaneous that means the value of [tex]\Delta G[/tex] is negative or we can say that the value is less than zero.
Thus
[tex]T\Delta S>\Delta H[/tex]
[tex]T\times 161J/Kmol> 178500J/mol[/tex]
[tex]T>1109K[/tex]
Significant figures are the figures in a number which express the value -the magnitude of a quantity to a specific degree of accuracy is known as significant digits.
Thus the temperature is [tex]1.109\times 10^3[/tex] in kelvins above which this reaction is spontaneous.