Answer:
Magnetic field, [tex]B=2.55\times 10^{-14}\ T[/tex]
Explanation:
It is given that,
Speed of proton, [tex]v=4\times 10^6\ m/s[/tex]
Mass of the proton, [tex]m=1.67\times 10^{-27}\ kg[/tex]
Charge on proton, [tex]q=1.6\times 10^{-19}\ C[/tex]
We need to find the magnetic field strength required to just balance the weight of the proton and keep it moving horizontally.
The Lorentz force is given by :
[tex]F=q(v\times B)=qvB\ sin90[/tex].............(1)
The weight of proton,
[tex]W=mg[/tex]..............(2)
From equation (1) and (2), we get :
[tex]mg=qvB[/tex]
[tex]B=\dfrac{mg}{qv}[/tex]
[tex]B=\dfrac{1.67\times 10^{-27}\ kg\times 9.8\ m/s^2}{1.6\times 10^{-19}\ C\times 4\times 10^6\ m/s}[/tex]
[tex]B=2.55\times 10^{-14}\ T[/tex]
Hence, this is the required solution.