Respuesta :
Answer:
1 -> f
2 -> a
3 -> d
4 -> b
5 -> e
6 -> c
Step-by-step explanation:
We are given:
h(x) = 2 - 2x and g(x) = -2^x+2
a) k(x)= (g-h)(x) = g(x) - h(x)
= -2^x+2 - (2 - 2x)
= -2^x+2 - 2 + 2x
= -2^x+2x or 2x-2^x
k(x) = 2x-2^x = (g-h)(x)
So, 2 matches with a
b) k(x)= (g+h)(x) = g(x) + h(x)
= -2^x+2 + (2 - 2x)
= -2^x+2 + 2 - 2x
= -2^x+4-2x or 4 - 2^x -2x
So, k(x) = 4 - 2^x -2x = (g+h)(x)
So, 4 matches with b
c) k(x)= (2h - 2g)(x) = 2h(x) - 2g(x)
= 2(2 - 2x)-2(-2^x+2)
= 4 - 4x+2.2^x-4
= -4x+2^x+1 or 2^x+1-4x
So, k(x) = 2^x+1-4x = (2h - 2g)(x)
So, 6 matches with c
d) k(x) = (h-2g)(x) = h(x) - 2g(x)
= (2 - 2x)-2(-2^x+2)
= 2 - 2x+2.2^x-4
= -2-2x+2^x+1
= 2^x+1-2x-2
So, k(x) = 2^x+1-2x-2 = (h-2g)(x)
So, 3 matches with d
e) k(x) = (h-g)(x) = h(x) - g(x)
= (2 - 2x)-(-2^x+2)
= 2 - 2x+2^x-2
= -2x+2^x or 2^x-2x
So, k(x) = 2^x-2x = (h-g)(x)
So, 5 matches with e
f) k(x) = (2g+h)(x) = 2g(x)+h(x)
= 2(-2^x+2) + (2 - 2x)
= -2.2^x+4 + 2 - 2x
= -2^x+1+6-2x or 6 - 2^x+1-2x
So, k(x) = 6 - 2^x+1-2x = (2g+h)(x)
So, 1 matches with f
Answer:
1) 6 - 2^(x + 1) - 2x = (2g - h)(x)
2) 2x - 2^x = (g - h)(x)
3) 2^(x + 1) - 2x - 2 = (h - 2g)(x)
4) 4 - 2^x - 2x = (g + h)(x)
5) 2^x - 2x = (h - g)(x)
6) 2^(x + 1) - 4x = (2h - 2g)(x)
Step-by-step explanation:
* Lets use right column to find the corresponding function in the
left column
∵ h(x) = 2 - 2x
∵ g(x) = -2^x + 2
# k(x) = (g - h)(x)
∵ k(x) = g(x) - h(x)
∴ k(x) = -2^x + 2 - (2 - 2x) ⇒ multiply the -ve sign by the bracket
- Remember -ve × +ve = -ve and -ve × -ve = +ve
∴ k(x) = -2^x + 2 - 2 + 2x
∴ k(x) = -2^x + 2x ⇒ (2)
∴ k(x) = (g - h)(x) ⇒ (2)
* 2x - 2^x = (g - h)(x)
# k(x) = (g + h)(x)
∵ k(x) = g(x) + h(x)
∴ k(x) = -2^x + 2 + (2 - 2x) ⇒ simplify
∴ k(x) = -2^x + 2 + 2 - 2x
∴ k(x) = -2^x + 4 - 2x ⇒ (4)
∴ k(x) = (g + h)(x) ⇒ (4)
* 4 - 2^x - 2x = (g + h)(x)
# k(x) = (2h - 2g)(x)
∵ k(x) = 2h(x) - 2g(x)
- Lets find 2h(x) and 2g(x)
∵ 2h(x) = 2[2 - 2x] = 2(2) - 2(2x) = 4 - 4x
∵ 2g(x) = 2[-2^x + 2] = 2(-2^x) + 2(2)
- Remember a^n × a^m = a^(n + m)
∴ 2g(x) = 2(-2^x) + 4 = - (2 × 2^x) + 4 = - 2^(x + 1) + 4
∴ k(x) = 4 - 4x - [-2^(x + 1) + 4] ⇒ simplify
∴ k(x) = 4 - 4x + 2^(x + 1) - 4
∴ k(x) = 2^(x + 1) - 4x ⇒ (6)
∴ k(x) = (2h - 2g)(x) ⇒ (6)
* 2^(x + 1) - 4x = (2h - 2g)(x)
# k(x) = (h - 2g)(x)
∵ k(x) = h(x) - 2g(x)
∵ h(x) = 2 - 2x =
∴ 2g(x) = - 2^(x + 1) + 4
∴ k(x) = 2 - 2x - [-2^(x + 1) + 4] ⇒ simplify
∴ k(x) = 2 - 2x + 2^(x + 1) - 4
∴ k(x) = 2^(x + 1) - 2x - 2 ⇒ (3)
∴ k(x) = (h - 2g)(x) ⇒ (3)
* 2^(x + 1) - 2x - 2 = (h - 2g)(x)
# k(x) = (h - g)(x)
∵ k(x) = h(x) - g(x)
∴ k(x) = 2 - 2x - [-2^x + 2] ⇒ multiply the -ve sign by the bracket
- Remember -ve × +ve = -ve and -ve × -ve = +ve
∴ k(x) = 2 - 2x + 2^x - 2
∴ k(x) = 2^x - 2x ⇒ (5)
∴ k(x) = (h - g)(x) ⇒ (5)
* 2^x - 2x = (h - g)(x)
# k(x) = (2g + h)(x)
∵ k(x) = 2g(x) + h(x)
∵ h(x) = 2 - 2x =
∴ 2g(x) = - 2^(x + 1) + 4
∴ k(x) = -2^(x + 1) + 4 + 2 - 2x ⇒ simplify
∴ k(x) = -2^(x + 1) - 2x + 6
∴ k(x) = 6 - 2^(x + 1) - 2x ⇒ (1)
∴ k(x) = (2g + h)(x) ⇒ (1)
* 6 - 2^(x + 1) - 2x = (2g - h)(x)