Respuesta :

Answer:

see explanation

Step-by-step explanation:

Given

f(x) = [tex]e^{2x}[/tex] - 4

let f(x) = y

y = [tex]e^{2x}[/tex] - 4

Switch x and y and solve for y, that is

x = [tex]e^{2y}[/tex] - 4 ( add 4 to both sides )

x + 4 = [tex]e^{2y}[/tex]

Take the ln of both sides

ln(x + 4) = ln [tex]e^{2y}[/tex] = 2y [tex]ln_{e}[/tex] = 2y

Divide both sides by 2

y = [tex]\frac{ln(x+4)}{2}[/tex], that is

[tex]f^{-1}[/tex] (x) = [tex]\frac{ln(x+4)}{2}[/tex]