Answer:
[tex]\large\boxed{V=3780\ in^3}\\\boxed{S.A.=1827\ in^2}[/tex]
Step-by-step explanation:
The formula of a volume of a prism:
[tex]V=BH[/tex]
B - base area
H - height
In the base we have the right triangle. The formula of an area of a right triangle:
[tex]A=\dfrac{(a)(b)}{2}[/tex]
a, b - legs
We have a = 14in and b = 22.5in. Substitute:
[tex]B=\dfrac{(14)(22.5)}{2}=157.5\ in^2[/tex]
H = 24in.
Calculate the volume:
[tex]V=(157.5)(24)=3780\ in^3[/tex]
The Surface Area:
We have
(1) two right triangles with area 157.5 in²
(2) three rectangles 24 in × 14 in, 24 in × 22.5 in, 24 in × 26.5 in.
Calculate the areas of the rectangles:
[tex]A_1=(24)(14)=336\ in^2\\\\A_2=(24)(22.5)=540\ in^2\\\\A_3=636\ in^2[/tex]
The Surface Area:
[tex]S.A.=2B+A_1+A_2+A_3\\\\S.A.=(2)(157.5)+336+540+636=1827\ in^2[/tex]