Respuesta :
[tex]\bf \qquad \qquad \textit{direct proportional variation} \\\\ \textit{\underline{y} varies directly with \underline{x}}\qquad \qquad y=kx\impliedby \begin{array}{llll} k=constant\ of\\ \qquad variation \end{array} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \textit{we know that } \begin{cases} y=8\\ x=4 \end{cases}\implies 8=k4\implies \cfrac{8}{4}=k\implies 2=k \\\\[-0.35em] ~\dotfill\\\\ ~\hfill y=2x~\hfill[/tex]
For this case we have that by definition, a direct variation is represented as:
[tex]y = kx[/tex]
Where:
k: It is the constant of proportionality
So:
[tex]k = \frac {y} {x}[/tex]
Substituting the values we have:
[tex]k = \frac {8} {4}[/tex]
Finally, the proportionality constant is:
[tex]k = 2[/tex]
Answer:
[tex]y=2x[/tex]
