Answer:
[tex]I = 94.33 kg m^2[/tex]
Explanation:
Let say the rod is slightly pulled away from its equilibrium position
So here net torque on the rod due to its weight is given as
[tex]\tau = mg dsin\theta[/tex]
since rod is pivoted at distance of 1.4 m from centre of gravity
so its moment of inertia about pivot point is given as
[tex]Inertia = I[/tex]
now we have
[tex]I \alpha = mg d sin\theta[/tex]
now for small angular displacement we will have
[tex]\alpha = \frac{mgd}{I}\theta[/tex]
so angular frequency of SHM is given as
[tex]\omega = \sqrt{\frac{mgd}{I}}[/tex]
now we will have
[tex]\frac{2\pi}{9} = \sqrt{\frac{4.8(9.8)1.4}{I}[/tex]
[tex]I = 94.33 kg m^2[/tex]