A large stick is pivoted about one end and allowed to swing back and forth with no friction as a physical pendulum. The mass of the stick is 4.8 kg and its center of gravity (found by finding its balance point) is 1.4 m from the pivot. If the period of the swinging stick is 9 seconds, what is the moment of inertia of the stick about an axis through the pivot

Respuesta :

Answer:

[tex]I = 94.33 kg m^2[/tex]

Explanation:

Let say the rod is slightly pulled away from its equilibrium position

So here net torque on the rod due to its weight is given as

[tex]\tau = mg dsin\theta[/tex]

since rod is pivoted at distance of 1.4 m from centre of gravity

so its moment of inertia about pivot point is given as

[tex]Inertia = I[/tex]

now we have

[tex]I \alpha = mg d sin\theta[/tex]

now for small angular displacement we will have

[tex]\alpha = \frac{mgd}{I}\theta[/tex]

so angular frequency of SHM is given as

[tex]\omega = \sqrt{\frac{mgd}{I}}[/tex]

now we will have

[tex]\frac{2\pi}{9} = \sqrt{\frac{4.8(9.8)1.4}{I}[/tex]

[tex]I = 94.33 kg m^2[/tex]

RELAXING NOICE
Relax