contestada

A sample of blood is placed in a centrifuge of radius 12.0 cm. The mass of a red blood cell is 3.0 ✕ 10^−16 kg, and the magnitude of the force acting on it as it settles out of the plasma is 4.0 ✕ 10^−11 N. At how many revolutions per second should the centrifuge be operated?

Respuesta :

Answer:

167.85 rev / s

Explanation:

r = 12 cm = 0.12 m, m = 3 x 10^-16 kg, F = 4 x 10^-11 N

F = m r w^2

where, w is the angular velocity.

4 x 10^-11 = 3 x 10^-16 x 0.12 x w^2

w = 1054.1 rad / s

w = 2 π f

f = w / 2 π = 1054.1 / (2 x 3.14) = 167.85 rev / s

fichoh

The number of revolutions given by the calculated frequency value in which the centrifuge would be operated is 167.8 Hz.

Recall :

  • Frequency, f = ω/2π

  • Force, F = mω²r

  • Mass, m = [tex] 3 \times 10^{-16}[/tex]

  • Force, F = [tex] 4 \times 10^{-11} N[/tex]

  • Radius, r = 12 cm = 12/100 = 0.12 m

We calculate the angular velocity, ω thus :

ω² = F/mr

ω² = [tex] \frac{4 \times 10^{-11}}{3 \times 10^{-16} \times 0.12 = 11.11 \times 10^{5}[/tex]

ω = [tex] \sqrt{1.11 \times 10^{6}} = 1053.56 rad/s[/tex]

Frequency = 1053.56 ÷ (2π)

Frequency = 167.68 Hz

Therefore, the Number of revolutions per seconds would be about 167.8 Hz

Learn more : https://brainly.com/question/11607177

ACCESS MORE