A floating ice block is pushed through a displacement d = (23 m) i - (9 m) j along a straight embankment by rushing water, which exerts a force F = (200 N) i - (149 N) j on the block. How much work does the force do on the block during the displacement?

Respuesta :

Answer:

Work done, W = 5941 joules

Explanation:

It is given that,

Force exerted on the block, [tex]F=(200i-149j)\ N[/tex]

Displacement, [tex]x=(23i-9j)\ m[/tex]

Let W is the work done by the force do on the block during the displacement. Its formula is given by :

[tex]W=F.d[/tex]

[tex]W=(200i-149j){\cdot} (23i-9j)[/tex]                    

Since, i.i = j.j = k.k = 1

[tex]W=4600+1341[/tex]

W = 5941 joules

So, the work done by the force do on the block during the displacement is 5941 joules. Hence, this is the required solution.

Work is the energy transferred to an object by the application of force along a displacement. The work done by the force on the block during the displacement is 5941 J.

Work is the energy transferred to an object by the application of force along a displacement.

Given Here,

Displacement d = (23 m) i - (9 m) j

Force exerted on the block  F = (200 N) i - (149 N) j  

Work formula,

W = F.d

W =  (200 N) i - (149 N) j  . (23 m) i - (9 m) j

Since i.i = j.j = k.k = 1

Hence,

W = 4600 + 1341

W = 5941 J

Hence we can conclude that the work done by the force on the block during the displacement is 5941 J.

To know more about work formula, refer to the link:

https://brainly.com/question/22116319

ACCESS MORE