Answer:
[tex]\sqrt{\frac{4}{9}}[/tex]
Explanation:
The frequency of a simple pendulum is given by:
[tex]f=\frac{1}{2\pi}\sqrt{\frac{g}{L}}[/tex]
where
g is the acceleration of gravity
L is the length of the pendulum
Calling [tex]L_1[/tex] the length of the first pendulum and [tex]g_1[/tex] the acceleration of gravity at the location of the first pendulum, the frequency of the first pendulum is
[tex]f_1=\frac{1}{2\pi}\sqrt{\frac{g_1}{L_1}}[/tex]
The length of the second pendulum is 0.4 times the length of the first pendulum, so
[tex]L_2 = 0.4 L_1[/tex]
while the acceleration of gravity experienced by the second pendulum is 0.9 times the acceleration of gravity experienced by the first pendulum, so
[tex]g_2 = 0.9 g_1[/tex]
So the frequency of the second pendulum is
[tex]f_2=\frac{1}{2\pi}\sqrt{\frac{g_2}{L_2}}=\frac{1}{2\pi} \sqrt{\frac{0.9 g_1}{0.4 L_1}}[/tex]
Therefore the ratio between the two frequencies is
[tex]\frac{f_1}{f_2}=\frac{\frac{1}{2\pi}\sqrt{\frac{g_1}{L_1}}}{\frac{1}{2\pi} \sqrt{\frac{0.9 g_1}{0.4 L_1}}}=\sqrt{\frac{0.4}{0.9}}=\sqrt{\frac{4}{9}}[/tex]