Answer:
102.5 N
Explanation:
The impulse theorem applied to this situation states that:
[tex]F \Delta t = m \Delta v[/tex]
where
F is the average force applied on the child and the sled
[tex]\Delta t[/tex] is the time interval during which the force is applied
The term on the right represents the variation of momentum, which is the product of:
m is the mass of the child+sled
[tex]\Delta v[/tex] is the change in velocity of the child+sled
In this situation we have:
[tex]\Delta v = 0 - 1.5 m/s = -1.5 m/s[/tex]
m = 41 kg
[tex]\Delta t = 0.60 s[/tex]
So we can solve to find the average force:
[tex]F=\frac{m\Delta v}{\Delta t}=\frac{(41 kg)(-1.5 m/s)}{0.60 s}=-102.5 N[/tex]
And the negative sign means the force is applied against the direction of motion of the child. So the magnitude of the force is 102.5 N.