Answer:
The orbital period is 91 min.
(d) is correct option.
Explanation:
Given that,
Altitude = 350 km
We know that,
Radius of earth [tex]r=6.380\times10^{6}\ m[/tex]
[tex]R=6.380\times10^{6}+350\times10^{3}[/tex]
[tex]R = 6.73\times10^{6}\ m[/tex]
Mass of earth [tex]m =5.980\times10^{24}\ kg[/tex]
We need to calculate the orbital period
Using formula of orbital period
[tex]T^2=(\dfrac{4\pi^2}{GM})R^3[/tex]
Where,
G = gravitational constant
M = mass of earth
Put the value into the formula
[tex]T^2=\dfrac{4\times3.14^2}{6.67\times10^{-11}\times5.980\times10^{24}}\times(6.73\times10^{6})^3[/tex]
[tex]T=\sqrt{30139598.473}\ s[/tex]
[tex]T=91\ min[/tex]
Hence, The orbital period is 91 min.