Respuesta :
Answer:
Option C is correct.
Step-by-step explanation:
A direct variation function is
y/x = k
i.e. we can say that the ratio of y and x is equal to a constant value k.
We will check for each Option given.
Option A
7/2 = 7/2
8/3 = 8/3
9/4 = 9/4
10/5 = 2
11/6 = 11/6
Option D is incorrect as y/x ≠ k as ratio of y/x for each value of table doesn't equal to constant
Option B
-3/2 = -3/2
-5/4 = -5/4
-6/6 = -1
-7/8 = -7/8
-8/10 = -4/5
Option B is incorrect as y/x ≠ k as ratio of y/x for each value of table doesn't equal to constant
Option C
10/-5 = -2
8/-4 = -2
6/-3 = -2
4/-2 = -2
2/-1 = -2
Option C is correct as y/x = k as ratio of y/x for each value in table c is equal to constant value -2
Option D
-3/-2 = 3/2
-3/1 = -3
-3/0 = 0
-3/1 = -3
-3/2 = -3/2
Option D is incorrect as y/x ≠ k as ratio of y/x for each value of table doesn't equal to constant .
SO, Option C is correct.
Answer: OPTION C
Step-by-step explanation:
The function of direct variation has this form:
[tex]y=kx[/tex]
Where k is the constant of variation.
Let's check if there is a constant of variation on the Options "a" and "b":
On Option A:
[tex]\frac{7}{2}=3.5\\\\\frac{8}{2}=4[/tex]
On Option B:
[tex]\frac{-3}{2}=-1.5\\\\\frac{-5}{4}=-1.25[/tex]
There is no constant of variation, then these tables do no represent a direct variation.
On the table shown in Option "d" you can observe that "y" does not change when "x" changes. Then it does not represent a direct variation.
Since on the table shown in Option "c":
[tex]k=-2[/tex]
This table represents a direct variation.