jayyy51
contestada


Write the equation of the line that passes through the points (8, -1) and (2,-5) in standard form, giver
slope form is y+1 = (x-8)

Respuesta :

gmany

Answer:

2x - 3y = 19

Step-by-step explanation:

The formula of a slope:

[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

We have the points (8, -1) and (2, -5). Substitute:

[tex]m=\dfrac{-5-(-1)}{2-8}=\dfrac{-4}{-6}=\dfrac{2}{3}[/tex]

The point-slope form of an equation of a line:

[tex]y-y_1=m(x-x_1)[/tex]

Substitute:

[tex]y-(-1)=\dfrac{2}{3}(x-8)[/tex]

[tex]y+1=\dfrac{2}{3}(x-8)[/tex] → the point-slope form

Convert to the standard form: [tex]Ax+By=C[/tex]

[tex]y+1=\dfrac{2}{3}(x-8)[/tex]        multiply both sides by 3

[tex]3y+3=2(x-8)[/tex]         use the distributive property a(b+c) = ab+ ac

[tex]3y+3=2x-16[/tex]      subtract 3 from both sides

[tex]3y=2x-19[/tex]       subreact 2x from both sides

[tex]-2x+3y=-19[/tex]       change the signs

[tex]2x-3y=19[/tex] → the standard form

RELAXING NOICE
Relax

Otras preguntas