A particle moves in a straight line and has acceleration given by a(t) = 12t + 10. Its initial velocity is v(0) = −5 cm/s and its initial displacement is s(0) = 9 cm. Find its position function, s(t).

Respuesta :

Answer:

The position function is [tex]s_{t}=2t^3+5t^2-5t+9[/tex].

Explanation:

Given that,

Acceleration [tex]a =12t+10[/tex]

Initial velocity [tex]v_{0} = -5\ cm/s[/tex]

Initial displacement [tex]s_{0}=9\ cm[/tex]

We know that,

The acceleration is the rate of change of velocity of the particle.

[tex]a = \dfrac{dv}{dt}[/tex]

The velocity is the rate of change of position of the particle

[tex]v=\dfrac{dx}{dt}[/tex]

We need to calculate the the position

The acceleration is

[tex]a_{t} = 12t+10[/tex]

[tex]\dfrac{dv}{dt} = 12t+10[/tex]

[tex]a_{t}=dv=(12t+10)dt[/tex]

On integration both side

[tex]\int{dv}=\int{(12t+10)}dt[/tex]

[tex]v_{t}=6t^2+10t+C[/tex]

At t = 0

[tex]v_{0}=0+0+C[/tex]

[tex]C=-5[/tex]

Now, On integration again both side

[tex]v_{t}=\int{ds_{t}}=\int{(6t^2+10t-5)}dt[/tex]

[tex]s_{t}=2t^{3}+5t^2-5t+C[/tex]

At t = 0

[tex]s_{0}=0+0+0+C[/tex]

[tex]C=9[/tex]

[tex]s_{t}=2t^3+5t^2-5t+9[/tex]

Hence, The position function is [tex]s_{t}=2t^3+5t^2-5t+9[/tex].

ACCESS MORE