Explanation with answer:
First, in problems like this, it is always clear to draw a diagram to make sure you understand the problem. If it is not possible to draw the diagram correctly, perhaps something is misunderstood or missing from the question.
Here, see the attached image.
Note that the rope has a tension of T that pulls both the furniture and the safe.
To find the final speed (when the safe hits the truck), we need first to find the acceleration.
The system's total mass, M = 1000+500 kg = 1500 kg
Forces acting on the system
= gravity acting on the safe less friction acting on the furniture.
= m1*g - mu*m2g
= 1000*9.81 - 0.5*500*9.81
= 7357.5 N
Acceleration, a = F/m = 7357.5 / 1500 = 4.905 m/s^2
Initial speed = 0 m/s
distance travelled, S = 3m
Let final speed = v
Kinematics equation gives
v^2-u^2 = 2aS
v^2 = 2*4.905*3 - 0^2 = 29.43 m^2/s^2
final speed, v = sqrt(29.43) = 5.4 m/s (to two significant figures.