Answer:
The length of the string is 0.051 meters
Explanation:
It is given that,
Tension in the string, T = 240 N
Mass of the string, m = 0.086 kg
Speed of the wave, v = 12 m/s
The speed of the wave on the string is given by :
[tex]v=\sqrt{\dfrac{T}{M}}[/tex]
M is the mass per unit length of the string i.e. M = m/l.......(1)
So, [tex]M=\dfrac{T}{v^2}[/tex]
[tex]M=\dfrac{240\ N}{(12\ m/s)^2}[/tex]
M = 1.67 kg/m
The length of the string can be calculated using equation (1) :
[tex]l=\dfrac{m}{M}[/tex]
[tex]l=\dfrac{0.086\ kg}{1.67\ kg/m}[/tex]
l = 0.051 m
So, the length of the string is 0.051 meters. Hence, this is the required solution.