Respuesta :

[tex]\bf \textit{arc's length}\\\\ s=\cfrac{\pi \theta r}{180}~~ \begin{cases} r=radius\\ \theta =angle~in\\ \qquad degrees\\ \cline{1-1} r=9\\ \theta =6 \end{cases}\implies s=\cfrac{\pi (6)(9)}{180}\implies s=\cfrac{3\pi }{10}\implies s\approx 0.94[/tex]

The arc length s cut off by a central angle of 6 degrees

[tex]$s=\frac{3 \pi}{10} f t$[/tex].

How to estimate arc length?

Let 's' define the arc length, '[tex]$\theta$[/tex]' define the central angle in radians and 'r' be the radius of the circle. Then a central angle of '[tex]$\theta$[/tex]' radians in a circle of radius r subtends an arc of length.

We must define [tex]$6^{\circ}$[/tex] in radians

[tex]$s=r \theta$[/tex]

[tex]$180^{\circ}-\pi \mathrm{rad}$[/tex]

[tex]$6^{\circ}-\theta \mathrm{rad}$[/tex]

Then

[tex]$\theta=\frac{6}{180} \cdot \pi=\frac{\pi}{30}$[/tex]

The arc length s cut off by a central angle of 6 degrees

[tex]$s=9 f t\left(\frac{\pi}{30}\right)=\frac{3 \pi}{10} \mathrm{ft}$[/tex]

[tex]$s=\frac{3 \pi}{10} f t$[/tex].

Therefore, the arc length s cut off by a central angle of 6 degrees is

[tex]$s=\frac{3 \pi}{10} f t$[/tex].

To learn more about arc length

https://brainly.com/question/1597355

#SPJ2

RELAXING NOICE
Relax

Otras preguntas