Respuesta :
Answer:
Distance, d = 61.13 ft
Explanation:
It is given that,
Initial speed of the car, u = 50 mi/h = 73.34 ft/s
Finally, it stops i.e. v = 0
Deceleration of the car, [tex]a=-44\ ft/s^2[/tex]
We need to find the distance covered before the car comes to a stop. Let the distance is s. It can be calculated using third law of motion as :
[tex]v^2-u^2=2as[/tex]
[tex]s=\dfrac{v^2-u^2}{2a}[/tex]
[tex]s=\dfrac{0-(73.34\ ft/s)^2}{2\times -44\ ft/s^2}[/tex]
s = 61.13 ft
So, the distance covered by the car before it comes to rest is 61.13 ft. Hence, this is the required solution.
Answer:
The distance covered by car before stopping is 61.13 ft.
Explanation:
Given data:
Initial Speed of car is, [tex]u=50 \;\rm mi/h = 50 \times 1.467 =73.35 \;\rm ft/s[/tex].
Deceleration of car is, [tex]a=-44\;\rm ft/s^{2}[/tex]. (Negative sign shows negative acceleration)
Applying the second kinematic equation of motion as,
[tex]v^{2}=u^{2}+2as[/tex]
Here, s is the distance covered and v is the final speed. Since, car stops finally, v = 0.
Solving as,
[tex]0^{2}=73.35^{2}+2(-44) \times s\\88s =73.35^{2}\\s \approx 61.1 \;\rm ft[/tex]
Thus, distance covered by car before stopping is 61.1 ft.
For more details, refer to the link:
https://brainly.com/question/13202575?referrer=searchResults