Respuesta :
Answer:
Option D. 3.73
Step-by-step explanation:
we know that
[tex]tan(x+y)=\frac{tan(x)+tan(y)}{1-tan(x)tan(y)}[/tex]
and
[tex]sin^{2}(\alpha)+cos^{2}(\alpha)=1[/tex]
step 1
Find cos(X)
we have
[tex]sin(x)=\frac{1}{2}[/tex]
we know that
[tex]sin^{2}(x)+cos^{2}(x)=1[/tex]
substitute
[tex](\frac{1}{2})^{2}+cos^{2}(x)=1[/tex]
[tex]cos^{2}(x)=1-\frac{1}{4}[/tex]
[tex]cos^{2}(x)=\frac{3}{4}[/tex]
[tex]cos(x)=\frac{\sqrt{3}}{2}[/tex]
step 2
Find tan(x)
[tex]tan(x)=sin(x)/cos(x)[/tex]
substitute
[tex]tan(x)=1/\sqrt{3}[/tex]
step 3
Find sin(y)
we have
[tex]cos(y)=\frac{\sqrt{2}}{2}[/tex]
we know that
[tex]sin^{2}(y)+cos^{2}(y)=1[/tex]
substitute
[tex]sin^{2}(y)+(\frac{\sqrt{2}}{2})^{2}=1[/tex]
[tex]sin^{2}(y)=1-\frac{2}{4}[/tex]
[tex]sin^{2}(y)=\frac{2}{4}[/tex]
[tex]sin(y)=\frac{\sqrt{2}}{2}[/tex]
step 4
Find tan(y)
[tex]tan(y)=sin(y)/cos(y)[/tex]
substitute
[tex]tan(y)=1[/tex]
step 5
Find tan(x+y)
[tex]tan(x+y)=\frac{tan(x)+tan(y)}{1-tan(x)tan(y)}[/tex]
substitute
[tex]tan(x+y)=[1/\sqrt{3}+1}]/[{1-1/\sqrt{3}}]=3.73[/tex]
