Respuesta :

Answer:

Option D. 3.73​

Step-by-step explanation:

we know that

[tex]tan(x+y)=\frac{tan(x)+tan(y)}{1-tan(x)tan(y)}[/tex]

and

[tex]sin^{2}(\alpha)+cos^{2}(\alpha)=1[/tex]

step 1

Find cos(X)

we have

[tex]sin(x)=\frac{1}{2}[/tex]

we know that

[tex]sin^{2}(x)+cos^{2}(x)=1[/tex]

substitute

[tex](\frac{1}{2})^{2}+cos^{2}(x)=1[/tex]

[tex]cos^{2}(x)=1-\frac{1}{4}[/tex]

[tex]cos^{2}(x)=\frac{3}{4}[/tex]

[tex]cos(x)=\frac{\sqrt{3}}{2}[/tex]

step 2

Find tan(x)

[tex]tan(x)=sin(x)/cos(x)[/tex]

substitute

[tex]tan(x)=1/\sqrt{3}[/tex]

step 3

Find sin(y)

we have

[tex]cos(y)=\frac{\sqrt{2}}{2}[/tex]

we know that

[tex]sin^{2}(y)+cos^{2}(y)=1[/tex]

substitute

[tex]sin^{2}(y)+(\frac{\sqrt{2}}{2})^{2}=1[/tex]

[tex]sin^{2}(y)=1-\frac{2}{4}[/tex]

[tex]sin^{2}(y)=\frac{2}{4}[/tex]

[tex]sin(y)=\frac{\sqrt{2}}{2}[/tex]

step 4

Find tan(y)

[tex]tan(y)=sin(y)/cos(y)[/tex]

substitute

[tex]tan(y)=1[/tex]

step 5      

Find tan(x+y)

[tex]tan(x+y)=\frac{tan(x)+tan(y)}{1-tan(x)tan(y)}[/tex]

substitute

[tex]tan(x+y)=[1/\sqrt{3}+1}]/[{1-1/\sqrt{3}}]=3.73[/tex]

Answer:

D. 3.73

Step-by-step explanation:

RELAXING NOICE
Relax