Answer : The equilibrium constant [tex]K_c[/tex] for the reaction is, 0.1133
Explanation :
First we have to calculate the concentration of [tex]Br_2[/tex].
[tex]\text{Concentration of }Br_2=\frac{\text{Moles of }Br_2}{\text{Volume of solution}}[/tex]
[tex]\text{Concentration of }Br_2=\frac{1.35moles}{0.780L}=1.731M[/tex]
Now we have to calculate the dissociated concentration of [tex]Br_2[/tex].
The balanced equilibrium reaction is,
[tex]Br_2(g)\rightleftharpoons 2Br(aq)[/tex]
Initial conc. 1.731 M 0
At eqm. conc. (1.731-x) (2x) M
As we are given,
The percent of dissociation of [tex]Br_2[/tex] = [tex]\alpha[/tex] = 1.2 %
So, the dissociate concentration of [tex]Br_2[/tex] = [tex]C\alpha=1.731M\times \frac{1.2}{100}=0.2077M[/tex]
The value of x = 0.2077 M
Now we have to calculate the concentration of [tex]Br_2\text{ and }Br[/tex] at equilibrium.
Concentration of [tex]Br_2[/tex] = 1.731 - x = 1.731 - 0.2077 = 1.5233 M
Concentration of [tex]Br[/tex] = 2x = 2 × 0.2077 = 0.4154 M
Now we have to calculate the equilibrium constant for the reaction.
The expression of equilibrium constant for the reaction will be :
[tex]K_c=\frac{[Br]^2}{[Br_2]}[/tex]
Now put all the values in this expression, we get :
[tex]K_c=\frac{(0.4154)^2}{1.5233}=0.1133[/tex]
Therefore, the equilibrium constant [tex]K_c[/tex] for the reaction is, 0.1133