Consider the following reaction at a high temperature. Br2(g) ⇆ 2Br(g) When 1.35 moles of Br2 are put in a 0.780−L flask, 3.60 percent of the Br2 undergoes dissociation. Calculate the equilibrium constant Kc for the reaction.

Respuesta :

Answer : The equilibrium constant [tex]K_c[/tex] for the reaction is, 0.1133

Explanation :

First we have to calculate the concentration of [tex]Br_2[/tex].

[tex]\text{Concentration of }Br_2=\frac{\text{Moles of }Br_2}{\text{Volume of solution}}[/tex]

[tex]\text{Concentration of }Br_2=\frac{1.35moles}{0.780L}=1.731M[/tex]

Now we have to calculate the dissociated concentration of [tex]Br_2[/tex].

The balanced equilibrium reaction is,

                              [tex]Br_2(g)\rightleftharpoons 2Br(aq)[/tex]

Initial conc.         1.731 M      0

At eqm. conc.      (1.731-x)    (2x) M

As we are given,

The percent of dissociation of [tex]Br_2[/tex] = [tex]\alpha[/tex] = 1.2 %

So, the dissociate concentration of [tex]Br_2[/tex] = [tex]C\alpha=1.731M\times \frac{1.2}{100}=0.2077M[/tex]

The value of x = 0.2077 M

Now we have to calculate the concentration of [tex]Br_2\text{ and }Br[/tex] at equilibrium.

Concentration of [tex]Br_2[/tex] = 1.731 - x  = 1.731 - 0.2077 = 1.5233 M

Concentration of [tex]Br[/tex] = 2x = 2 × 0.2077 = 0.4154 M

Now we have to calculate the equilibrium constant for the reaction.

The expression of equilibrium constant for the reaction will be :

[tex]K_c=\frac{[Br]^2}{[Br_2]}[/tex]

Now put all the values in this expression, we get :

[tex]K_c=\frac{(0.4154)^2}{1.5233}=0.1133[/tex]

Therefore, the equilibrium constant [tex]K_c[/tex] for the reaction is, 0.1133

RELAXING NOICE
Relax