Answer: (d) 0.3558.
Step-by-step explanation:
We know that the standard error of sample mean difference is given by:-
[tex]S.E.=\sqrt{\dfrac{s_1^2}{n_1}+\dfrac{s_2^2}{n_2}}[/tex]
Given : [tex]n_1= 20\ ,\ n_2=20[/tex]
[tex]s_1=1.10\ ,\ \ s_2=1.15[/tex]
Then , the standard error of the sampling distribution of the sample mean difference [tex]\overline{x_1}-\overline{x_2}[/tex] is equal to :-
[tex]S.E.=\sqrt{\dfrac{1.10^2}{20}+\dfrac{1.15^2}{20}}\\\\\Rightarrow\ S.E.=0.355844066973\approx0.3558[/tex]
Hence, the standard error of the sampling distribution of the sample mean difference [tex]\overline{x_1}-\overline{x_2}[/tex] is equal to 0.3558.