caerb
contestada

If θ is an angle in standard position that terminates in Quadrant III such that tanθ = 5/12, then sinθ/2 = _____.

Respuesta :

Answer:

[tex]\displaystyle \sin{\frac{\theta}{2}} = \frac{5\sqrt{26}}{26}\approx 0.196[/tex].

Step-by-step explanation:

[tex]\displaystyle \theta\in \left(\pi, \frac{3\pi}{2}\right)[/tex],

such that

[tex]\displaystyle \frac{\theta}{2} \in \left(\frac{\pi}{2}, \frac{3\pi}{4}\right)[/tex].

As a result,

  • [tex]\displaystyle 0 < \sin{\frac{\theta}{2}} <1[/tex], and
  • [tex]\displaystyle -1 < \cos{\frac{\theta}{2}} <0[/tex].

[tex]\displaystyle \tan{\frac{\theta}{2}} = \frac{\sin{\displaystyle \frac{\theta}{2}}}{\displaystyle \cos{\frac{\theta}{2}}}[/tex],

such that

  • [tex]\displaystyle \tan{\frac{\theta}{2}} <0[/tex].

Let

[tex]\displaystyle t = \tan{\frac{\theta}{2}}[/tex].

[tex]t < 0[/tex].

By the double angle identity for tangents.

[tex]\displaystyle \frac{\displaystyle 2\tan{\frac{\theta}{2}}}{1-\displaystyle \left(\tan{\frac{\theta}{2}}\right)^{2}} = \tan{\theta}[/tex].

[tex]\displaystyle \frac{2t}{1 - t^{2}} = \frac{5}{12}[/tex].

[tex]24t = 5 - 5t^{2}[/tex].

Solve this quadratic equation for [tex]t[/tex]:

  • [tex]\displaystyle t_1 = \frac{1}{5}[/tex], and
  • [tex]t_2 = -5[/tex].

Discard [tex]t_1[/tex] for it is not smaller than zero.

Let [tex]\displaystyle s = \sin{\frac{\theta}{2}}[/tex].

[tex]0 < s <1[/tex].

By the definition of tangents:

[tex]\displaystyle \tan{\frac{\theta}{2}} = \frac{\displaystyle \sin{\frac{\theta}{2}}}{\displaystyle \cos{\frac{\theta}{2}}}[/tex].

Apply the Pythagorean Algorithm to express the cosine of [tex]\displaystyle \frac{\theta}{2}[/tex] in terms of [tex]s[/tex]. Note that [tex]\displaystyle \cos{\frac{\theta}{2}}[/tex] is expected to be smaller than zero.

[tex]\displaystyle \cos{\frac{\theta}{2}} = -\sqrt{1 - \left(\sin{\frac{\theta}{2}}\right)^{2}}= - \sqrt{1 - s^{2}}[/tex].

Solve for [tex]s[/tex]:

[tex]\displaystyle \frac{s}{- \sqrt{1 - s^{2}}} = -5[/tex].

[tex]s^{2} =25(1 - s^{2})[/tex].

[tex]\displaystyle s = \sqrt{\frac{25}{26}} = \frac{5\sqrt{26}}{26}[/tex].

Therefore

[tex]\displaystyle \sin{\frac{\theta}{2}} = \frac{5\sqrt{26}}{26}\approx 0.196[/tex].

RELAXING NOICE
Relax