Respuesta :

Answer:

The first choice, [tex]\frac{x-3}{x^{2}-4 }[/tex]

Step-by-step explanation:

Excluded value means that the value of x will make the denominator 0.

(-2)² - 4 = ?

4 - 4 = 0.

Therefore, it's the first choice– [tex]\frac{x-3}{x^{2}-4 }[/tex]

Answer:

[tex]x^2-3/x^2-4[/tex]

Step-by-step explanation:

An excluded value of x for any rational function or expression is when you have any value of x that makes the value of the function undefined. Thus, these values ​​must be excluded from the domain of the function.

in order to know if a value is an excluded value you have to calculate it in the expression:

x=-2

[tex]x^2-3/x^2-4[/tex]=[tex](-2)^2-3/(-2)^2-4[/tex]=[tex]4-3/4-4[/tex]= function undefined (because denominator 0 is undefined)

[tex]x-3/x^2+4[/tex]=[tex]-2-3/(-2)^2+4[/tex]=[tex]-5/8[/tex]=function defined

[tex]x^2-4/x-3[/tex]=[tex](-2)^2-4/-2-3[/tex]=[tex]0[/tex]=function defined

[tex]x^2+4/x-3[/tex]=[tex](-2)^2+4/-2-3[/tex]=[tex]8/-5[/tex]=function defined

ACCESS MORE