For which rational expression is -2 an excluded value of x?

Answer:
The first choice, [tex]\frac{x-3}{x^{2}-4 }[/tex]
Step-by-step explanation:
Excluded value means that the value of x will make the denominator 0.
(-2)² - 4 = ?
4 - 4 = 0.
Therefore, it's the first choice– [tex]\frac{x-3}{x^{2}-4 }[/tex]
Answer:
[tex]x^2-3/x^2-4[/tex]
Step-by-step explanation:
An excluded value of x for any rational function or expression is when you have any value of x that makes the value of the function undefined. Thus, these values must be excluded from the domain of the function.
in order to know if a value is an excluded value you have to calculate it in the expression:
x=-2
[tex]x^2-3/x^2-4[/tex]=[tex](-2)^2-3/(-2)^2-4[/tex]=[tex]4-3/4-4[/tex]= function undefined (because denominator 0 is undefined)
[tex]x-3/x^2+4[/tex]=[tex]-2-3/(-2)^2+4[/tex]=[tex]-5/8[/tex]=function defined
[tex]x^2-4/x-3[/tex]=[tex](-2)^2-4/-2-3[/tex]=[tex]0[/tex]=function defined
[tex]x^2+4/x-3[/tex]=[tex](-2)^2+4/-2-3[/tex]=[tex]8/-5[/tex]=function defined