Respuesta :

Answer:  [tex]y=(x +3)^2 -6[/tex]

Step-by-step explanation:

The equation of a parabola in Vertex form is:

[tex]y=a(x-h)^2+k[/tex]

Where [tex](h,k)[/tex] is the vertex of the parabola

We can rewrite the function [tex]f(x)= x^2 + 6x + 3[/tex] as:

 [tex]y= x^2 + 6x + 3[/tex]

 In order to convert it into vertex form we need to Complete the square:

Take the coefficient of the x term, divide it by 2 and square it:

[tex](\frac{6}{2})=3^2[/tex]

Add and subtract 3² on the right side:

[tex]y= x^2 + 6x+3^2 + 3-3^2[/tex]

Now we must convert the right side to a squared expression, then we get:

 [tex]y=(x +3)^2 -6[/tex]

ACCESS MORE
EDU ACCESS