Respuesta :
Answer: The theoretical yield of iron (II) oxide is 5.53g and percent yield of the reaction is 93.49 %
Explanation:
To calculate the number of moles, we use the equation:
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex] ....(1)
- For Iron:
Given mass of iron = 4.31 g
Molar mass of iron = 53.85 g/mol
Putting values in above equation, we get:
[tex]\text{Moles of iron}=\frac{4.31g}{53.85g/mol}=0.0771mol[/tex]
For the given chemical reaction:
[tex]2Fe(s)+O_2(g)\rightarrow 2FeO(s)[/tex]
By Stoichiometry of the reaction:
2 moles of iron produces 2 moles of iron (ii) oxide.
So, 0.0771 moles of iron will produce = [tex]\frac{2}{2}\times 0.0771=0.0771mol[/tex] of iron (ii) oxide
Now, calculating the theoretical yield of iron (ii) oxide using equation 1, we get:
Moles of of iron (II) oxide = 0.0771 moles
Molar mass of iron (II) oxide = 71.844 g/mol
Putting values in equation 1, we get:
[tex]0.0771mol=\frac{\text{Theoretical yield of iron(ii) oxide}}{71.844g/mol}=5.53g[/tex]
To calculate the percentage yield of iron (ii) oxide, we use the equation:
[tex]\%\text{ yield}=\frac{\text{Experimental yield}}{\text{Theoretical yield}}\times 100[/tex]
Experimental yield of iron (ii) oxide = 5.17 g
Theoretical yield of iron (ii) oxide = 5.53 g
Putting values in above equation, we get:
[tex]\%\text{ yield of iron (ii) oxide}=\frac{5.17g}{5.53g}\times 100\\\\\% \text{yield of iron (ii) oxide}=93.49\%[/tex]
Hence, the theoretical yield of iron (II) oxide is 5.53g and percent yield of the reaction is 93.49 %