The diagram shows corresponding lengths in two similar figures. Find the area of the smaller figure. A. 14.4 yd2 B. 24 yd2 C. 26.4 yd2 D. 28

Answer:
B. 24 yd^2
Step-by-step explanation:
Let A denote the area of the smaller figure:
We can determine the ratio of both lengths and areas as:
3:5 :: A:40
As the areas of figures vary directly with their lengths and widths so the proportion will be direct proportion.
Converting into fractions will give us:
3/5 = A/40
Now we have to find the value of A for the area of smaller figure.
Cross multiplication will give us:
3*40 = 5A
=> 120 = 5A
=> 120/5 = 5A/5
So,
A = 24 yd^2
So, Option B is the correct answer ..