Answer:
a. 50 mph.
b. 16 mph.
Step-by-step explanation:
Convert minutes to hours using dimensional analysis:
[tex]\displaystyle \rm 24 \; minutes \times \frac{1\; hour}{60\; minutes} = \frac{2}{5}\; hours[/tex].
Average speed is distance traveled over time taken:
[tex]\displaystyle \text{Average Speed} = \frac{\text{Distance Traveled}}{\text{Time Taken}} = \rm \frac{20\; miles}{\dfrac{2}{5}\; hours} = (20 \times \frac{5}{2})\; mph= 50\; mph[/tex].
Similarly,
[tex]\displaystyle \text{Time Taken} = \rm 75 \; minutes \times \frac{1\; hour}{60\; minutes} = \frac{5}{4}\; hours[/tex].
[tex]\displaystyle \text{Average Speed} = \frac{\text{Distance Traveled}}{\text{Time Taken}} = \rm \frac{20\; miles}{\dfrac{5}{4}\; hours} = (20\times \frac{4}{5})\; mph= 16\; mph[/tex].