Answer:
720
Step-by-step explanation:
Given : The word ABSENT
To Find: How many different 6-letter arrangements can be formed using the letters in the word ABSENT, if each letter is used only once?
Solution:
Number of letters in ABSENT = 6
So, No. of arrangements can be formed using the letters in the word ABSENT, if each letter is used only once = 6!
= [tex]6 \times 5 \times 4\times 3 \times 2 \times 1[/tex]
= [tex]720[/tex]
So, Option C is true
Hence there are 720 different 6-letter arrangements can be formed using the letters in the word ABSENT.