Respuesta :

Answer:

[tex]\frac{1-cos^2(2x)}{4}[/tex]

Step-by-step explanation:

We have the following expression

[tex]sin^2x *cos^2x[/tex]

Whe know that:

[tex]sin^2(x) = \frac{1-cos(2x)}{2}\\\\cos^2(x)=\frac{1+cos(2x)}{2}[/tex]

Now replace these equations in the main expression and simplify

[tex](\frac{1-cos(2x)}{2})*(\frac{1+cos(2x)}{2})[/tex]

[tex](\frac{(1-cos(2x))(1+cos(2x))}{4})[/tex]

Apply the following property

[tex](a + b) (a-b) = a ^ 2 -b ^ 2[/tex]

Then

[tex](\frac{(1-cos(2x))(1+cos(2x))}{4})=\frac{1^2-cos^2(2x)}{4}[/tex]

Finally:

[tex](\frac{(1-cos(2x))(1+cos(2x))}{4})=\frac{1-cos^2(2x)}{4}[/tex]

ACCESS MORE