Respuesta :

Answer:

(a) [tex]f'(x)=-\frac{2}{x^3}[/tex]

(b) [tex]y=-0.25x+0.75[/tex]

Step-by-step explanation:

The given function is

[tex]f(x)=\frac{1}{x^2}[/tex]                  .... (1)

According to the first principle of the derivative,

[tex]f'(x)=lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}[/tex]

[tex]f'(x)=lim_{h\rightarrow 0}\frac{\frac{1}{(x+h)^2}-\frac{1}{x^2}}{h}[/tex]

[tex]f'(x)=lim_{h\rightarrow 0}\frac{\frac{x^2-(x+h)^2}{x^2(x+h)^2}}{h}[/tex]

[tex]f'(x)=lim_{h\rightarrow 0}\frac{x^2-x^2-2xh-h^2}{hx^2(x+h)^2}[/tex]

[tex]f'(x)=lim_{h\rightarrow 0}\frac{-2xh-h^2}{hx^2(x+h)^2}[/tex]

[tex]f'(x)=lim_{h\rightarrow 0}\frac{-h(2x+h)}{hx^2(x+h)^2}[/tex]

Cancel out common factors.

[tex]f'(x)=lim_{h\rightarrow 0}\frac{-(2x+h)}{x^2(x+h)^2}[/tex]

By applying limit, we get

[tex]f'(x)=\frac{-(2x+0)}{x^2(x+0)^2}[/tex]

[tex]f'(x)=\frac{-2x)}{x^4}[/tex]

[tex]f'(x)=\frac{-2)}{x^3}[/tex]                         .... (2)

Therefore [tex]f'(x)=-\frac{2}{x^3}[/tex].

(b)

Put x=2, to find the y-coordinate of point of tangency.

[tex]f(x)=\frac{1}{2^2}=\frac{1}{4}=0.25[/tex]

The coordinates of point of tangency are (2,0.25).

The slope of tangent at x=2 is

[tex]m=(\frac{dy}{dx})_{x=2}=f'(x)_{x=2}[/tex]

Substitute x=2 in equation 2.

[tex]f'(2)=\frac{-2}{(2)^3}=\frac{-2}{8}=\frac{-1}{4}=-0.25[/tex]

The slope of the tangent line at x=2 is -0.25.

The slope of tangent is -0.25 and the tangent passes through the point (2,0.25).

Using point slope form the equation of tangent is

[tex]y-y_1=m(x-x_1)[/tex]

[tex]y-0.25=-0.25(x-2)[/tex]

[tex]y-0.25=-0.25x+0.5[/tex]

[tex]y=-0.25x+0.5+0.25[/tex]

[tex]y=-0.25x+0.75[/tex]

Therefore the equation of the tangent line at x=2 is y=-0.25x+0.75.

ACCESS MORE
EDU ACCESS