Answer:
[tex]\boxed{\text{2408 min}}[/tex]
Explanation:
The integrated rate law for radioactive decay is
[tex]\ln\dfrac{N_{0}}{N_{t}} = kt[/tex]
1. Calculate the decay constant
[tex]\begin{array}{rcl}\ln \dfrac{100}{90} & = & k \times 366\\\\1.054 & = & 366k\\\\k & = & \dfrac{1.054 }{366}\\\\k & = & 2.879 \times 10^{-4} \text{ min}^{-1}\\\end{array}\\\\[/tex]
2. Calculate the half-life
[tex]t_{\frac{1}{2}} = \dfrac{\ln2}{k}\\\\t_{\frac{1}{2}} = \dfrac{\ln2}{2.879 \times 10^{-4} \text{ min}^{-1}} = \text{2408 min}\\\\\text{The half-life for decay is } \boxed{\textbf{2408 min}}[/tex]